
EFFICIENT EXPLORATION VIA ACTOR-CRITIC ENSEMBLE

Sihao Chen
wingnutbc@berkeley.edu

Rahul Kumar
rahulkumar@berkeley.edu

December 19, 2020

ABSTRACT

Off-policy actor-critic Reinforcement Learning (RL) algorithms like Deep Deterministic Policy
Gradient (DDPG) suffer from instability and dependence on careful hyperparameter tuning. We
propose an off-policy actor-critic RL algorithm, Full Ensemble Deep Deterministic Policy Gradient
(FEDDPG), that uses two ensemble functions to combine multiple actor networks and critic networks
for exploration. In addition to using an ensemble, our algorithm improves the stability and robustness
of DDPG by incorporating multi-step learning and prioritized experience replay. The performance of
the agent outperforms state-of-the-art off-policy methods on multiple MuJoCo continuous control
environments. Finally, we describe an ensemble formulation of SAC, indicating that some of our
approaches can also be applied to algorithms that learn a non-deterministic policy.

Keywords Actor-Critic · Ensemble ·Multi-Step Learning · Prioritized Experience Replay

1 Introduction
The deep deterministic policy gradient (DDPG) algorithm is an off policy, actor-critic method that trains a Q function
and a policy over a continuous action space [1]. One of the primary issues with DDPG is that it can be unstable and
requires very careful hyperparameter tuning. Twin Delayed DDPG improves upon the original DDPG by maintaining
two Q functions, adding clipped noise to actions during training, and performing delayed policy updates [2]. The Soft
Actor Critic (SAC) algorithm also improves the stability of DDPG by incorporating the double Q trick, and by adding a
maximum entropy term to the objective [3]. An earlier result by Hessel et al. proposed Rainbow, an agent incorporating
double Q-learning, prioritized replay, and other methods for increasing the performance of DQN.
Some previous works use ensemble methods to improve the performance of RL agents. Wiering et al. [4] designed
four ensemble methods combining five RL algorithms based on their value functions. Hans et al. [5] used an ensemble
of networks to improve the performance of Fitted Q Iteration [6][7]. Bootstrapped DQN [8] uses a Q ensemble to
approximate Thompson sampling, resulting in improved exploration and a performance boost in challenging video
games. Zhang et al. [9] uses an actor ensemble and performs look-ahead tree search with those actors in continuous
control problems. However, none of these works combine the actor ensemble and the critic ensemble, nor do they
compare their performance with the state-of-the-art off-policy reinforcement learning algorithms, namely TD3 [2] and
SAC [3].
Considering the techniques described above for improving the stability and efficiency of DDPG, we propose an
improvement to DDPG that utilizes an ensemble of actor networks and critic networks. We call a function that reduces
the outputs of the ensemble to one element an ensemble function. For example, an ensemble function could, given the
outputs of each actor and critic network, select the single action with the highest average Q value. Previous results have
used Q-Ensembles to improve exploration rates by considering upper confidence bounds (UCB) [10]. That is, an agent
selects the action which maximizes the expected Q value plus a weight times the standard deviation of all the Q values
for that action [10].
Additionally, we show that the ensemble method also works for stochastic policies by formulating a simplified ensemble
version of SAC. Experiments show that the performance of this ensemble SAC method exceeds the existing version.

2 Background
We provide a very brief summary of Markov decision processes (MDPs) and some established algorithms for re-
inforcement learning. A Markov decision process (S,A, T ,R, γ), consists of a state space S, a set of actions A,
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transition probabilities T (s, a, s′) = P (s′|s, a), a reward function R(s, a), and a discount factor γ. The goal is to find a
parameterized policy πφ(s) that maximizes the expected infinite horizon reward E[

∑∞
t=0 γ

tR(st, at)] under that policy.
The Deep Deterministic Policy Gradient (DDPG) algorithm simultaneously trains a policy network π with parameter
vector φ and a Q function with parameter vector θ [1]. For stability, target Q and policy networks are maintained with
parameters θ′ and φ′. These parameters are updated by Polyak averaging with the parameters θ and φ. Starting from
some state s, DDPG performs the action πφ(s), possibly with some added noise, collects a sample (s, a, r, s′), and
stores that sample in a replay buffer B. Periodically, a batch D of samples is drawn uniformly at random from B, and
the actor and critic functions are updated by taking steps on the following loss functions:

JQ(θ) = E
(s,a,r,s′)∼D

[
(r + γQθ′(s

′, πφ′(s′))−Qθ(s, a))
2
]

Jπ(φ) = − E
s∼D

[Qθ(s, πφ(s))]

Twin Delayed DDPG (TD3) modifies DDPG to use two Q functions Qθ1 and Qθ2 , each with a corresponding target
function [2]. When calculating backups, the target Q function with a smaller output is used:

y = r + γmin
i
Qθ′i(s

′, a′),

where a′ = πφ′(s′) + ε, and ε is clipped noise. The Q networks are then updated by taking steps on the losses

JQi(θi) = E
(s,a,r,s′)∼D

[
(Qθi(s, a)− y)

2
]
.

The policy is updated according to
Jπ(φ) = − E

s∼D
[Qθ1(s, πφ(s))] .

In our experiments, we found that modifying this update to

Jπ(φ) = − E
s∼D

[minQθi(s, πφ(s))] , i = 1, 2

improves the training speed and final performance (see TD3 and 2Q1Pi in Table 2). Hence, we propose a new ensemble
method that choose an appropriate value from a critic ensemble.

3 Extensions to DDPG
3.1 Multi-Step Learning
Q-learning often tries to optimize a mean square Bellman error, with the Bellman backup calculated as

yt = rt + γmax
at+1

Qφ′(st+1, at+1) (1)

This target can be biased due to an incorrect critic network. An n-step return estimator [11] tries to reduce target value
bias by calculating targets using an n-step lookahead:

yt =

t+N−1∑
t′=t

γt−t
′
rt′ + γN max

at+N
Qφ′(st+N , at+N ) (2)

With appropriate choices of n, multi-step return typically leads to faster learning, especially in early steps. However, it
suffers from high bias when used in off-policy methods. This problem can be fixed by importance sampling [12], which
is also used by Prioritized Experience Replay (3.2).

3.2 Prioritized Experience Replay
In deep reinforcement learning, experience replay [13] allows agents to learn from their interactions in a different order
from the one in which they collected those interactions during exploration. While traditional methods draw samples
uniformly randomly from all saved interactions, agents with Prioritized Experience Replay [14] sample transactions
according to their importance. D4PG [15] uses the absolute TD-error |δ| of the experiences to evaluate the value of the
experiences, where the TD-error of a Q-network Qφ is given as:

δ = r(st, at) + γQ′φ(st+1, at+1)−Qφ(st, at). (3)

2
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However, TD-error alone does not take into account the importance of the examples to the actor networks. DDPGfD
[16] uses a modified priority function:

p = δ2 + λ|∇aQφ(st, at)|2 + ε+ εD, (4)

The second term represents the loss applied to the actor, ε is a small positive constant to make sure all samples have a
positive priority, and εD is a positive constant to increase the probabilities the demonstration transactions get sampled.
We don’t have demonstration transactions, so we remove εD. In addition, we found the square in (4) leads to unstable
updates in our experiments, so we modified the priority to:

p = δ + λ‖∇aQφ(st, at)‖+ ε. (5)

similar to DDPGfD [16], we use β = 1 as we want to learn the correct distribution from the beginning. We selected
α = 0.5 after testing different values of α in multiple environments.

4 Efficient Exploration via Actor-Critic Ensemble

Empirically, multiple policy networks can learn the optimal policy in complex environments where the best strategy
cannot be well represented by a single policy network [9]. In addition, multiple Q networks attenuate the overestimation
bias of Q-learning [2]. Based on these two observations, we propose a method called Full Ensemble DDPG (FEDDPG).
During training, the agent picks an action according to the actor ensemble function f , with additive clipped noise. The
resulting interaction with the environment is stored in a prioritized buffer with a priority calculated according to (5).
To update our networks, we draw N samples from our replay buffer based on their priorities. When updating networks
for a sample (s, a, r, s′), our agent picks an action ã using the actor ensemble function f again. The critic ensemble
function g is used to compute an estimate of the reward our agent expects to accrue starting from the state s′. We
compute target Q values as y = r + γg(s′, ã), and then update each Q function independently towards the targets. The
policy is updated in a manner similar to DDPG, except that for each sample, we only consider the Q function that
produces the smallest value. This is further described in section 5.1. Pseudocode for our algorithm is shown below.

Algorithm 1 Full Ensemble DDPG
Input: number of policy networks K1, number of Q networks K2, total steps T , batch size N , discount γ, policy delay
d, polyak update factor τ , policy ensemble function f , critic ensemble function g

1: Initialize K1 copies of independently initialized policy networks {πφi}
K1
i=1

2: Initialize K2 copies of independently initialized Q networks {Qθj}
K2
j=1

3: Define Φ := {φi}K1
i=1, Θ := {θj}K2

j=1

4: Initialize target networks Φ′ ← Φ,Θ′ ← Θ
5: Initialize replay buffer B
6: for step t = 1, · · · , T do
7: Pick an action with random noise at ← f(st|Φ, ξt), ξt ∼ N (0, 1)
8: Take action at, receive state st+1 and reward rt from environment
9: Add (st, at, rt, st+1) to replay buffer B

10: Sample mini-batch of N transitions (s, a, r, s′) from B
11: Pick an action using actor ensemble ã← f(s′|Φ′)
12: Calculate Bellman backup using critic ensemble y ← r + γg(s′, ã|Θ′)
13: Update critics θj ← argminθj N

−1 ∑(y −Qθj (s, a))2, j = 1, · · · ,K2

14: if t mod d then
15: Update policies by the deterministic policy gradient:
16: ∇φiJ(φi) = N−1

∑
∇a minj Qθj (s, a)|a=πφi (s)∇φiπφi(s), i = 1, · · · ,K1

17: Update target networks:
18: Θ′ ← τΘ + (1− τ)Θ′

19: Φ′ ← τΦ + (1− τ)Φ′

20: end if
21: end for

3
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Figure 1: A schematic representation of the networks our algorithm uses. The ensemble function f selects an action to
use given the output of each policy. The function g is used for calculating regression targets given the outputs of the
target Q networks.

Table 1: Hyperparameters used for Figure 2.

Method HalfCheetah-v2 Walker2d-v2 Ant-v2 Swimmer-v2

Prioritized Experience Replay True False True False
Target Steps 1 1 1 5
K1 1 2 1 1
K2 2 3 2 2

5 Experiments
5.1 Ensemble Functions
We propose two ways to choose the best action network for exploration and calculating target values: UCB Ensemble
and Min-Q Ensemble. For the UCB ensemble, we construct a UCB by adding the empirical standard deviation
σ(st, πφi(st)) of {Qj(st, πφi(st)}

K2
j=1 to the empirical mean value µ(st, πφi(st)) of {Qj(st, πφi(st)}

K2
j=1. The agent

chooses the action that maximizes the UCB, where the standard deviation is weighted by some hyperparameter λs:

it = argmax
i
{µ(st, πφi(st)) + λsσ(st, πφi(st))}

at = πφit (st)
(6)

The mean and standard deviation in (6) are computed over the Q values Qθj (st, πφi(st)). Intuitively, an agent acting
using a Min-Q ensemble prefers the action that maximizes the most pessimistic expectation of reward, and therefore
simply chooses the action that has the highest minimum Q value over all Q-networks:

it = argmax
i

min
j
Qj(st, πφi(st))

K2
j=1. (7)

5.2 Evaluation
To evaluate our algorithm, we compare the performance of our method to previous techniques, in particular DDPG [1],
TD3 [2], and SAC [3] on multiple MuJoCo continuous control tasks [17], interfaced through OpenAI Gym [18]. We
used the original evironment settings proposed by Brockman et al. without modification of the environment rewards.
For all the algorithms we implemented, we use the same two-layer perceptron (MLP) of 400 and 300 hidden nodes
respectively. We use rectified linear units (ReLU) between each linear layer as the activation function for both the actor
and critic, and a final tanh unit following the output of the actor. We then scale the action by multiplying it with the
upper bound of the action value. Following the configuration in the TD3 paper [2], the critic receives both the state
and action as input to the first layer. We use a replay buffer with a capacity of 106 to store the transactions. Replay
buffers with and without prioritized replay were tested. We show the learning curves of the best configurations for
comparison with other algorithms. For multi-step returns, we choose different target steps for each environment. The
hyperparameters used to generate the plots in Figure 2 are shown in Table 1.
All network parameters are updated using Adam [19] with a learning rate of 10−3. We set the maximum episode
length to 1000. Each time the maximum episode length is reached or the environment returns a termination signal, the
networks are updated using the steps in the current episode with a mini-batch of 100, sampled from a replay buffer
containing the entire history of the agent. We also adopt clipped Gaussian noise and delayed policy updates from TD3

4
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Figure 2: Learning curves for the OpenAI gym continuous control tasks. Full Ensemble DDPG (purple) outperforms
other techniques in all the environments.

[2]. In the calculation of the Bellman backup, a random noise ε ∼ N (0, 0.2) is added to the target policy, clipped to
(−0.5, 0.5). The delayed policy updates consist of only updating the actor and target critic network every d iterations,
with d = 2. Both target networks are updated by Polyak averaging using τ = 0.005. As in TD3 [2], we also use a
purely exploratory (randomized) policy for the first 10000 time steps of stable length environments (HalfCheetah-v2
and Ant-v2) and the first 1000 time steps for the remaining environments. Afterwards, we use an off-policy exploration
strategy, adding Gaussian noise N (0, 0.1) to each action.
To show that our method also works for stochastic policies, we implemented an ensemble version of SAC by simply
replacing the Q-value used to calculate loss from the first Q-network to the Min-Q ensemble of the Q-networks. Only 1
actor network is used for all tasks.
The learning curves are presented in Figure 2. FEDDPG matches or outperforms all other algorithms in final performance
across all tasks and has a faster learning speed in most tasks. The final performance and learning speed of our ensemble
SAC algorithm surpasses the original SAC implementation in all tasks tested.

5.3 Ablation Study
We perform ablation studies to understand the contribution of each individual component: multi-step return, prioritized
experience replay, actor ensemble, and critic ensemble. We present our results in Table 2, in which we compare the
performance of various ablations of FEDDPG, along with our modifications to the architecture and hyper-parameters.
The significance of each component varies from task to task. While one policy network and two critic networks are
enough for many environments, increasing the number of networks improves the performance of the agent for some
tasks. Multi-step return and prioritized experience replay improve the agent’s performance significantly in some tasks
while worsening it in other tasks.

6 Discussion

The ensemble method can be seen as a preliminary high-level policy in hierarchical reinforcement learning [20]. The
Option framework [21][22] is a hierarchical reinforcement learning framework that uses high-level policies to control
lower-level policies (options). The Option-Critic Architecture [23] introduces a method to learn options end-to-end
using policy gradients, which can work on both discrete and continuous state and action spaces. A newer paper [9]

5
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Table 2: Average return over the last 10 evaluations over 10 trials of 1 million time steps. Maximum value for each task
is bolded. mQnP means K1 = n,K2 = m.

Method HalfCheetah-v2 Walker2d-v2 Ant-v2 Swimmer-v2

DDPG 8416.36 2180.22 380.33 122.16
TD3 8671.86 4138.32 4421.38 45.73
2Q1Pi 9876.06 5003.46 5085.48 47.91
3Q2Pi 8916.56 4744.50 5277.33 54.19
2Q1Pi+5steps 8671.86 2246.41 1362.74 136.58
3Q2Pi+5steps 8362.57 2895.26 1476.20 160.07
2Q1Pi+PER 9101.12 4137.24 5425.78 46.67
3Q2Pi+PER 9889.42 3931.52 5132.02 52.96
2Q1Pi+PER+5steps 4790.63 3654.46 1209.88 48.65
3Q2Pi+PER+5steps 4680.68 1972.01 1574.09 209.55

relates actor ensembles with options and performs a look-ahead tree search with those actors in continuous control
problems.
DDPG [1] adds noise sampled from a noise process N to the actor policy. An Ornstein-Uhlenbeck process [24]
can be used to generate temporally correlated noise for exploration in physical control problems, although Gaussian
noise is often used in practice. TD3 [2] adds a clipped Gaussian noise ε ∼ N (0, σ) to each dimension of the action.
Additionally, NoisyNets [25] are neural networks whose weights and biases are perturbed by a parametric function of
the noise. A linear layer represented by y = wx+ b can be converted to a corresponding noisy linear layer defined by
y = (µw + σw � εw)x+ µb + σb � εb. NoisyNets have been shown to outperform ε-greedy exploration in discrete
action spaces [25]. Future works can use NoisyNets to improve the exploration further.
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