
Image Classification
A Short Survey on Commonly Used Techniques

Sihao Chen∗1, Cem Koc∗1

Abstract— This report examines the performance of
some of the most widely available image processing tech-
niques and classifiers for general multi-class classification
on a dataset containing 20 labels. We have trained both
neural net and non-neural net based classifiers. The
images are processed and featurized using a variety of
image processing techniques after doing an exhaustive
exploratory data analysis. Afterwards, these feature vec-
tors are used as inputs to the classifiers which are trained
using 5-fold cross validation. Although neural nets have
become the industry standard for tackling this task,
we show that with feature engineering one can achieve
sensible accuracies using conventional classifiers. Among
the non-neural net based classifiers that fit well to our
training set, gradient boosting trees (using XGBoost)
has attained the highest testing accuracy (51%) with
logistic regression and SVM coming in second (46%).
Remaining non-neural classifiers: K-nearest neighbors,
decision tree classifier and random forests, perform sig-
nificantly worse. Finally, we further confirm that neural
nets achieve significantly better than all of our classifiers
at 83%.

I. INTRODUCTION

The task of image classification has rightfully
drew the attention of many researchers and indus-
try professionals alike for decades. Since images
are such a rich medium, the real-world applications
of classification tasks have made significant con-
tributions to technology and the way we live today
from cancer diagnoses, to detecting lanes for au-
tonomous vehicles and to tracking animals in their
habitats. Since the problem domain is so rich, so is
the techniques to achieve it. In an effort to explain
the wide-variety of tools and techniques available
for image classification we feel compelled to write
this report to summarize a very short sample of

1Sihao Chen and Cem Koc are with the Department
of Electrical Engineering and Computer Sciences,
sihao@berkeley.edu,cemkoc@berkeley.edu
University of California, Berkeley, CA 94720 USA.

∗These authors contributed equally to this work.

Fig. 1. Bag of Visual Words encoding for an image with dense
spatial features represented as a histogram from a (partial) visual
vocabulary.

supervised techniques available to the modern-day
researchers, students and industry.

The structure of the report is as follows:
In section II we introduce the dataset, pre and
post cleaning procedures and the exploratory data
analysis performed.
In section III we introduce the feature engineering
and regularization steps performed. We introduce
the hand engineered features and the Bag of Visual
Words (BOVW) featurization steps. Furthermore,
we discuss our methods for training the non-neural
(conventional) classifiers as well as the neural net
based classifier. Here we also talk about the results
achieved using our neural net classifier.
In section IV we describe results achieved in all
of our conventional classifiers.
And finally in section V we summarize our report
and talk about the future steps.

II. DATASET

In this section we dive deeper into the dataset
and our exploratory data analysis as well as our
data cleaning methods.



A. Dataset Morphology

There are two datasets: a labeled dataset for
training and validation and an unlabeled dataset
for testing. The labeled dataset is located in
folder “20 categories training”. Images in each
category are located in a folder with label as its
name. The unlabeled dataset is located in folder
“20 Validation”.

The dataset for training and validation consists
of 1,501 images and 20 different types. Images are
of different sizes (i.e., numbers of pixels). There
are 1,485 RGB images and 16 grayscale images.
RGB images are represented as 3-d arrays with
the first two dimensions corresponding to the row
and column pixels and third dimension to the color,
and each value corresponds to a red, green, or blue
(RGB) color intensity between 0 and 28 − 1. The
third dimension size is always 3. Grayscale images
are represented as 2-d arrays with the dimensions
corresponding to the row and column pixels. Each
value corresponds to intensity between 0 and 28−1.

B. Data Cleaning and Exploratory Data Analysis

We want to train and evaluate our classifiers
using the provided dataset. We cannot use the
unlabeled dataset to test the accuracy of our clas-
sifiers. Also, cross-validation error alone is not
enough to compare the models, as we tune the
hyperparameters on the dataset. Thus, we split the
labeled dataset randomly to a training set, which
contains 80% of the labeled images, and a testing
set, which contains 20% of the labeled images.

In figure 2, we use a boxplot and a histogram to
visualize the distribution of size, width, and height
of the images. The sizes of images have a large
variance. The largest image is over 500 times as
large as the smallest one. The medium size of the
images is around 300, 000 and the first quartile is
slightly smaller than 200, 000 (≈ 256× 256× 3).

As in figure 3, we use a histogram to visual-
ize the distribution of average pixel intensities of
images over all channels. We found that the distri-
bution is unimodal, and the mode is around 120.
The distribution is similar to normal distribution,
but is slightly right skewed.

We use the barplot in figure 4 to visualize
the distribution of class frequencies. We found
class 9 (gorilla), class 12 (leopards), and class

14 (penguin) are the most frequent class, while
class 2 (bear) and class 10 (kangaroo) are the least
frequent classes.

III. METHODS

A. Feature Engineering and Regularization

The dataset contains images with different en-
codings, specifically RGB and greyscale images. In
an effort to standardize we convert the greyscale
images to RGB images by duplicating its inten-
sities in each channel. The shapes and values of
some features heavily depend on image size, and
we do not want the sizes of our images to decide
them sometimes (not always). We resize images
before extracting these features. We choose (256,
256) as the destination image size, smaller than
around 75% of the images.

We classify features into two types: global fea-
tures, which quantify an image as a whole, or
local features, which quantify local regions in
an image [1]. Global features have the ability to
generalize an entire object with a fixed-sized single
vector. Consequently, they can be used directly in
our classifiers. Local features, on the other hand,
are computed at multiple points in the image and
are consequently more robust to occlusion and
clutter. However, the shape of these local features
vary with the sizes and shapes of the images them-
selves. Moreover, their sizes grow with the number
of artifacts in the images therefore we discovered
that it is impractical to use them as-is for inputs
to classifiers because the features’ dimensionality
will make the classifiers prone to overfitting and
sensitive to input noise. In order to efficiently grab
local features that are size and rotation invariant,
we instead utilize an encoding called Bag of Visual
Words (BOVW) and collect additional feature in-
formation this way [2], [3]. Bag of Visual Words is
a commonly used technique inspired from the bag
of words model often found in the natural language
processing (NLP) literature. Simply put, it aims
to encode context aware, discrete visual features
from images which then could be used to build
a ”visual vocabulary” to describe the image as a
histogram of the learned features. We discuss the
BOVW featurization process in III-A.9 in greater
detail.



Fig. 2. Distribution of size, height, and width of the images

We extract the following features from each
image:

1) A scalar representing the pixel size of the
image.

2) A scalar representing the aspect ratio of the
image.

3) A scalar representing the average of the red-
channel intensity for the images.

4) A scalar representing the average of the
green-channel intensity for the images.

5) A scalar representing the average of the blue-
channel intensity for the images.

6) A scalar representing the standard deviation
of the red-channel intensity for the images.

7) A scalar representing the standard deviation
of the green-channel intensity for the images.

8) A scalar representing the standard deviation
of the blue-channel intensity for the images.

9) A scalar representing the proportion of the

pixels where red-channel intensity is higher
than green- and blue-channel intensities for
the images.

10) A scalar representing the proportion of
the pixels where green-channel intensity is
higher than red- and blue-channel intensities
for the images.

11) A scalar representing the proportion of the
pixels where blue-channel intensity is higher
than red- and green-channel intensities for
the images.

12) A scalar representing the mean value of Har-
ris Corner Detection Results on the image
[4].

13) A scalar representing the standard deviation
of Harris Corner Detection Results on the
image.

14) A scalar representing the number of corners
returned by Shi-Tomasi method [5].



Fig. 3. Summary of Pixel Intensities

Fig. 4. Class frequencies in the original training set (Best viewed in color)



15) A 64-component vector representing the
color histograms of the image.

16) A 7-component vector representing the Hu
moments of the image [6].

17) A 14-component vector representing the
Haralick Texture of the image [7].

18) A 49-component vector representing the
Zernike moments of the image [8].

19) A 162-component vector representing the
threshold adjacency statistics (TAS) of the
image [9].

20) A 250-component vector representing the
histogram of SIFT descriptors [10] after be-
ing processed by Bag of Visual Words [2].

1) Pixel Size, Intensity, and Aspect Ratio: We
use pixel size, aspect ratio, and mean value and
standard deviation of pixel intensities in three
channels as features. In addition, for each channel,
we calculate the proportion in the image where
intensity in this channel is higher than intensities
in other channels. This could reflect the relative
importance of a channel despite different bright-
ness of images.

We use the box plots in figure 5 to show the
pixel sizes, average pixel intensity of red channel,
and aspect ratio of images in each class. We can
see that most pictures in classes like airplanes and
leopards have fewer pictures compared to others.
This phenomenon could be accidental, but if the
images in the training and testing set are from the
same source, these features could help us with the
classification. On the other hand, We can see that
pictures belonging to the comet and killer whale
categories have a low red-channel intensity on
average. This could be explained by the dark sky
and dark skin of the whales. Similarly, The large
aspect ratio of images labeled as planes could be
caused by the shape of the planes. These features
are useful even outside our dataset.

2) Harris Corner Detection: We apply Harris
Corner Detection [4] to the images. The initial
results of Harris Corner Detection are grayscale
images where intensities are scores to determine
whether a pixel is a corner or not. We extract the
mean and standard deviation of these scores on
each image.

3) Shi-Tomasi Corner Detection: Shi-Tomasi
Corner Detection [5] is a small modification on

Harris Corner Detection that made the results
better. Instead of returning an image, it returns a
set of locations of detected keypoints. We use the
number of keypoints detected by this method as a
feature.

4) Color Histogram: A color histogram repre-
sents the distribution of colors in an image. It not
only can be visualized as a graph that gives a high-
level intuition of the intensity distribution, but also
can function as a feature in machine learning. We
split the colors according to the combination of
intensities in three channels into 43 = 64 bins. For
each image, there are 64 columns representing the
proportion of each color in the image.

5) Hu Moments: Hu Moments [6] of an image
are a set of seven numbers calculated using central
moments that are invariant to image transforma-
tions. The first six moments have been proved
to be invariant to translation, scale, and rotation,
and reflection. While the seventh moment’s sign
changes for image reflection. We directly use Hu
Moments as seven columns in our design matrix.

6) Haralick Texture: Haralick texture features
[7] are 14 global texture features based on the adja-
cency matrix. This matrix is square with dimension
Ng, where Ng is the number of gray levels in the
image. Element [i, j] of the matrix is generated by
counting the number of times a pixel with value i
is adjacent to a pixel with value j and then dividing
the entire matrix by the total number of such
comparisons made. We use the implementation in
Mahotas [11], where 13 Haralick texture features
are returned. This add 13 columns to our design
matrix.

7) Zernike Moments: Zernike Moments [8] are
a global measure of how the mass is distributed.
The magnitudes of Zernike moments were used as
features. This provided 49 descriptive features for
each image.

8) Threshold Adjacency Statistics: Threshold
adjacency statistics (TAS) [9] threshold the image
and to count the number of above threshold pixels
with a given number of above threshold pixels
adjacent. For each RGB image, TAS returns a
vector of 162 numbers. We found that the adding
TAS into our design matrix causes overfitting. So
we do not include it in the training process.

9) Scale Invariant Feature Transform: Scale In-
variant Feature Transform (SIFT) [10] is a method



Fig. 5. Pixel size, average pixel intensity, and aspect ratio in each class

to extract keypoints and their descriptors from
images. The descriptor of an image is a k × 128
matrix, where k is the number of detected key-
points. We apply SIFT to resized images, and
use Bag of Visual Words [2] to extract a fixed
number of scalars from every image as features.
We treat an image as a bag of words (BOW) and
use the descriptors to construct vocabularies and
represent each image as a histogram of discrete
feature frequencies that are in the image as shown
in 1.

The steps to generate BOVW features are as
follows. We first build a visual dictionary by
concatenating the SIFT descriptors of all images
along the first dimension. Then, we make clusters
from the descriptors using K-Means. The center of
each cluster will is used as the visual dictionary’s
vocabularies. We try different numbers of clusters
and found that the classifiers perform well when
the number of clusters is 250. Finally, for each
image, we make a frequency histogram of the
frequency of the vocabularies in the image. Those
histograms are our bag of visual words (BOVW).
The histogram is represented by 250 scalars, which
are added to our design matrix.

After generating our features, we standardize
them by subtracting the mean value of each col-
umn and dividing them by their standard deviation.
We drop the columns that have zero standard
deviation.

B. Training Conventional Classifiers

We train the following conventional classi-
fiers on our training set: logistic regression, k-

nearest neighbors (kNN), classification tree, ran-
dom forests, support vector machines (SVM), and
gradient boosting classification trees.

In an effort to train and measure the efficacy of
our classifiers, we use 5-fold cross validation to
train and validate each classifier on the featurized
dataset using all the features generated in the
previous step.

After each iteration of the cross validation, we
measure the training error and the validation error
on the trained model and added these values to a
list. The scores in our results indicate the average
of training error and average of validation error of
our classifiers as measured at the end of the cross
validation.

1) Logistic Regression: We build a multi-class
logistic regression model using the one-vs-rest
(OvR) scheme with L2 penalty and a intercept
term. There is one output value associated with
each class. The class that has the highest output
value is the predicted label.

2) K-Nearest Neighbors: A kNN classifier
stores instances of the training data. Classification
is computed from a simple majority vote of the
nearest neighbors of each point: a query point
is assigned the data class which has the most
representatives within the nearest neighbors of the
point.

3) Decision Tree Classifier: A decision tree
classifier learns from data to approximate a sine
curve with a set of if-then-else decision rules. Dur-
ing the learning process, a decision tree recursively
partitions the space by minimizing the impurity.
We use Gini as our impurity. We split the leave



node until all leaves are pure, which makes the
training error always euqal to 0.

4) Support Vector Machine: We implement a
support vector machine using the polynomial RBF
kernel. Support vector machines are flexible in the
way that one can use multiple kernels to represent
the features in higher dimensional space on which
we can fit a linear classifier.

5) Random Forest Classifier: Random forest
classifiers are a part of a family of models called
”ensemble” models. In short, random forests are
able to address the largest shortcoming of deci-
sion trees by limiting overfitting through training
an ensemble of trees on boostrap samples of
the training data and averaging their predictions
through a voting process in the case of multi-
class classification task at hand. With the insight
that each decision tree in our forest is trained
on an individual bootstrap sample of our dataset
therefore the average of their uncorrelated errors
has a mean of zero (for a suitably large number
of trees). Random forests are therefore able to
limit overfitting through reducing variance while
managing to keep the bias the same.

6) Gradient Boosting Decision Trees: Previ-
ously we discuss the power of ensemble mod-
els, specifically in their ability to limit overfitting
through lowering model variance. In this section
we also discuss a specific classifier that gotten con-
siderable attention since its widely used implemen-
tation in 2016 by Chen et al. [12] called XGBoost
which underneath uses the idea of greedy function
approximation presented first by Friedman et al.
in [13]. Concisely, the goal is to introduce gradient
boosting to ensemble of decision trees similar to
random forests which are unable to use traditional
optimization methods in Euclidean space due to
an absence of a global loss function that can be
minimized.

C. Training Neural Net Classifier
We train a neural net with PyTorch [14] on a

single NVIDIA GeForce GTX 1070 using the pre-
viously published VGG-16 architecture [15] with
the modification of changing the output classes to
20 to fit our task. As previously described, the
initial training set contained a total of 1501 images
which proved to be too little for the training and
validation losses to converge. For the loss function

we use the cross entropy loss as described in
equation (1) for a binary classification problem.
For the fully connected layers we use the ReLU
activation described in [16].

R(θ)
.
= − 1

n

n∑
i=1

(
yi log(σ(X

T
i θ)) + (1− yi) log(1− σ(XT

i θ))
) (1)

For neural networks it is essential for training
and validation losses to converge, this is one of the
reasons why neural nets tend to use mini-batches
of images to push through the network for the
forward and backward propagation steps. In order
to tackle this challenge we sample images from the
publicly available ImageNet dataset [17]. By using
an automated script to download the 20 categories
from ImageNet we expand our ”pre-training” set
to 20, 242 images. The image counts for each class
categories can be seen in Fig. 6

Our process for training the neural network is
as follows:

• Pre-process the augmented images by resizing
them to 224× 224 size.

• Normalize the training dataset to achieve zero
mean and unit variance.

• Train the VGG-16 model using the augmented
dataset with mini batch size of 64 in 20
epochs using Adam optimizer.

• Save this model to a file.
In general, neural net based classifiers out-

performing any other classifier with pre-training on
an augmented dataset has been widely known [18].
However, feature engineering is not to be looked
down upon as given by Pal et al. [19] where they
highlight the importance of combining a new pre-
processing procedure on the images called ”ZCA”
that attempts to normalize the images by projecting
it into principal component space.

IV. RESULTS
A. Logistic Regression

We use grid search to find the best value of
inverse of regularization strength C = 0.2. The
accuracy achieved 47% on the validation set and
47% on the test set.

B. K-Nearest Neighbors (kNN)
We use grid search to find the best number of

neighbors: 18. The accuracy achieved 47% on the
validation set and 33% on the test set.



Fig. 6. Image counts for each of the 20 classes in the augmented dataset used for pre-training the neural network. (Best viewed in color)

C. Decision Tree Classifier

We train a decision tree classifier until the leaf
nodes are pure nodes. The accuracy achieved 30%
on the validation set and 32% on the test set.

D. Support Vector Machine

We use 4 different kernels: ”RBF”, ”linear”,
”polynomial degree=2”, ”polynomial degree=3”
and have observed that RBF kernel performed
the best on both validation and test sets with a
slight regularization C = 3. We use grid search to
find the best regularization term. Our final SVM
classifier achieved 46% on the validation set and
45% on the test set.

E. Random Forest Classifier

Similarly in our previous other classifiers, we
use grid search to pick the best parameters of the
random forest classifier with the two important
parameters to search being: maximum depth and
number of estimators (decision trees). Since each
tree in the forest can be independently trained, we
leverage this by training in two separate cores of

our CPU in parallel. Our final classifier achieves
43% on our validation set and 46% on the test set.

F. Gradient Boosting Decision Trees

Using the XGBoost library we train a model on
our training set using 5-fold cross validation and
our final model achieves 90% on our validation set
and 51% on our test set.

Feature selection is an important step when
it comes to classification on such high dimen-
sional data therefore we print analyze the relative
importance of each feature using gains. The 5
features that have the highest gains are: The 43rd
component of color histogram, the average pixel
intensity of green channel, the 45th component of
color histogram, the size of the image, and the
132nd component of BoVW vector. On average,
our scalar-based features have a higher gain than
the scalar components in vector-based features. In
addition, the gain of aspect ratio ranks 9th over the
gains of 373 features, which helps us confirm that
it is a useful feature.



G. Neural Network

Using the saved model file we re-train the
neural net on our original dataset of 1200 images
and compute the accuracy on 301 images which
roughly corresponds to 20% of the entire dataset
available. We report that the accuracy achieved by
our neural net model is around 80−84% on the test
set which is significantly higher than the accuracy
Gradient Boosting Tree achieves on the test dataset
which is around 50− 55%.

V. CONCLUSION

Multi-class classification of images has become
a vital task in machine learning and computer
vision research with wide ranging applications in
the industry. In this report we show that image fea-
tures like pixel channel intensities, aspect ratio, and
image size can be useful features for image classi-
fication tasks. Moreover, relying on discrete feature
encoding techniques such as BOVW can help cap-
ture contextual, locally aware image descriptions in
the absence of convolutional neural nets. Through
visualizing the features in different categories we
are able to select the best features that help de-
scribe the images. We also show that gradient
boosting decision trees can achieve a higher accu-
racy in image classification task than many other
traditional machine learning algorithms. However,
even with careful feature engineering, we conclude
that accuracies of traditional techniques are still
significantly worse than the accuracy the neural
net based classifier achieves on the training data.

REFERENCES

[1] D. A. Lisin, M. A. Mattar, M. B. Blaschko, E. G. Learned-
Miller, and M. C. Benfield, “Combining Local and Global
Image Features for Object Class Recognition,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05) - Workshops, pp. 47–47, Sept.
2005. ISSN: 2160-7516.

[2] Sivic and Zisserman, “Video Google: a text retrieval approach
to object matching in videos,” in Proceedings Ninth IEEE
International Conference on Computer Vision, pp. 1470–1477
vol.2, Oct. 2003.

[3] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord,
“Learning representations by predicting bags of visual words,”
2020.

[4] C. Harris and M. Stephens, “A combined corner and edge
detector,” in Proceedings of the Alvey Vision Conference,
pp. 23.1–23.6, Alvety Vision Club, 1988. doi:10.5244/C.2.23.

[5] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto, “Mak-
ing good features track better,” in Proceedings. 1998 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (Cat. No.98CB36231), pp. 178–183, 1998.

[6] Ming-Kuei Hu, “Visual pattern recognition by moment in-
variants,” IRE Transactions on Information Theory, vol. 8,
pp. 179–187, Feb. 1962. Conference Name: IRE Transactions
on Information Theory.

[7] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural
Features for Image Classification,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-3, pp. 610–621,
Nov. 1973. Conference Name: IEEE Transactions on Systems,
Man, and Cybernetics.

[8] M. R. Teague, “Image analysis via the general theory of mo-
ments*,” JOSA, vol. 70, pp. 920–930, Aug. 1980. Publisher:
Optical Society of America.

[9] N. A. Hamilton, R. S. Pantelic, K. Hanson, and R. D. Teas-
dale, “Fast automated cell phenotype image classification,”
BMC Bioinformatics, vol. 8, p. 110, Mar. 2007.

[10] D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” International Journal of Computer Vision, vol. 60,
pp. 91–110, Nov. 2004.

[11] L. P. Coelho, “Mahotas: Open source software for scriptable
computer vision,” Journal of Open Research Software, vol. 1,
p. e3, July 2013. arXiv: 1211.4907.

[12] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” CoRR, vol. abs/1603.02754, 2016.

[13] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine.,” Ann. Statist., vol. 29, pp. 1189–1232, 10
2001.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Pro-
cessing Systems 32 (H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–
8035, Curran Associates, Inc., 2019.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2015.

[16] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proceedings of the 27th
International Conference on International Conference on Ma-
chine Learning, ICML’10, (Madison, WI, USA), p. 807–814,
Omnipress, 2010.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255, Ieee, 2009.

[18] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell, “Decaf: A deep convolutional
activation feature for generic visual recognition,” CoRR,
vol. abs/1310.1531, 2013.

[19] K. K. Pal and K. S. Sudeep, “Preprocessing for image clas-
sification by convolutional neural networks,” in 2016 IEEE
International Conference on Recent Trends in Electronics,
Information Communication Technology (RTEICT), pp. 1778–
1781, 2016.


	INTRODUCTION
	DATASET
	Dataset Morphology
	Data Cleaning and Exploratory Data Analysis

	METHODS
	Feature Engineering and Regularization
	Pixel Size, Intensity, and Aspect Ratio
	Harris Corner Detection
	Shi-Tomasi Corner Detection
	Color Histogram
	Hu Moments
	Haralick Texture
	Zernike Moments
	Threshold Adjacency Statistics
	Scale Invariant Feature Transform

	Training Conventional Classifiers
	Logistic Regression
	K-Nearest Neighbors
	Decision Tree Classifier
	Support Vector Machine
	Random Forest Classifier
	Gradient Boosting Decision Trees

	Training Neural Net Classifier

	RESULTS
	Logistic Regression
	K-Nearest Neighbors (kNN)
	Decision Tree Classifier
	Support Vector Machine
	Random Forest Classifier
	Gradient Boosting Decision Trees
	Neural Network

	Conclusion
	References

