Assistive Technology for Navigation, Selection,
Pointing, and Clicking in a Mouse-free Environment

Shigi Wu, Sihao Chen, Weili Liu, Frank Cai, Yizhou Wang, Xuantong Liu, Brian Barsky

Department of Electrical Engineering and Computer Science, University of California, Berkeley

Abstract—We devise a new solution to computer mouse con-
trolling system using a webcam with computer vision-based
methods. By applying computer vision algorithms, we are able
to track the hands, recognize the gestures as well as use gesture
information to control the mouse. The entire process can operate
automatically and free users from physical mouse interaction.

I. INTRODUCTION

Nowadays, the mouse has become a standard input device
for computers. We must use mouses or trackpads to interact
with computers and send commands. However, some people
have trouble controlling a physical mouse. Conditions that can
cause difficulties in using computer mouses include impaired
sensation from nerve damage, Type II diabetes, spinal cord or
head injury, and some other illnesses.

People with conditions such as severe motion impairments
have the demand to use computers but may have trouble
working with a mouse or a keyboard to control the computer
[1]. Unfortunately, most of the very few existing feasible al-
ternative solutions out there are not applicable with consumer-
grade computers. Furthermore, supplemental devices might be
needed for some of them to work. It’s also suggested that
individuals with motion impairments tend to prefer camera-
based communication interfaces because of the customizable
and comfortable nature. Most importantly, those approaches
do not require the use of additional accessories that could
emphasize users’ disability [2].

To help people with difficulties using a traditional physical
computer mouse, we have developed a computer vision-based
input system with a camera as its input device.

<&

left | right | scroll

/ click | click up

Hand gesture recognition

Keypoint detection

Video frames

Hand tracking

AN ["2

Traditional image processing

Fig. 1: Breakdown of our methods. 1 is Hand keypoints detection; 2
is Skeleton-based hand gesture classification; 3 is Image-based hand
gesture classification; 4 is Image processing; 5 is Hand tracking.

II. RELATED WORKS
A. Image Processing

Traditional image processing is a common tool for hand
tracking and gesture recognition. To segment hand area from
original frame, there are several standard procedures. As in [3]
and [4], background subtraction and skin color segmentation
can be the first major process. Based on skin color modeling,
several methods [5], [6], [7], [8], [9] use skin color to locate
related human body parts. With adaptive technology [9], the
precision of skin detection could increase by a certain degree.
Besides skin segmentation, another important process is face
removal. Works like [10], [11] remove face region using Haar-
like features, which requires decent background light intensity
and computing power. After the above operations, the contour
and defects of hands could be found using the OpenCV library
[12] since convexity defects [13] are a simple but efficient way
to mark hand gestures.

Generally, we would like to find defects and inner circle
of given hand so that it becomes much explicit for classifiers
to figure out gestures, as shown in figure 2. The capital A to
H areas are our convexity defects, while the red circle is our
inner circle.

C, = Center of Max
inscribed circle

C = Center of Min
enclosing circle

ra = Max inscribed radius

75 = Min enclosing radius

la = Depth distance

I, = Shorter distance

1, = Longer distance

6. = Angle between convex

6k = K-Curvature angle

ps = Start point

pa= Depth point

pe = End point

Fig. 2: Hand Contour and Related Properties from Image Processing
from [3]

B. Image-Based Hand Gesture Recognition

Recognizing the gestures represented by a sequence of
image frames requires large amounts of computations. Thanks
to the advance of deep convolutional neural networks (CNN5s)
[14][15][16] and recurrent neural networks (RNNs) such as
Long Short-Term Memory (LSTM)[17] and Gated Recurrent
Unit (GRU)[18], new techniques based on large-sized CNN

models tend to achieve high accuracy in gesture classifica-
tion tasks. Most approaches use either 3D-CNNs or RNNs
(LSTMs) to extract temporal information.

3D-CNN-based models perform convolutional operations
along the time axis, which enables them to learn rich temporal
information. [19] achieved state-of-the-art performance by
using a lightweight CNN model to detect gestures and a
deep 3D-CNN model to classify the detected gestures. The
ResNeXt-101 model, which is used as a classifier, achieved
the state-of-the-art offline classification accuracy of 94.04%
on the EgoGesture dataset[20].

Fig. 3: Sequential models. Based on classic RNNs (on the left), long-
short term memory (LSTM, on the middle) and gate recurrent units
(GRU, on the right) are developed to improve models’ performance
on more complicated sequences.

Videos are basically data with sequential structure. There-
fore, sequential models can be applied to multi-frame gesture
recognition. Recurrent neural networks are models specially
designed for sequential data analysis. Long short term memory
networks (LSTM) designed based on traditional RNN signifi-
cantly improves models’ long time feature extraction and can
be applied into gesture recognition tasks. LSTM based model
performs well when the related information locates relatively
far in the gesture sequence. [21] introduces LSTM to the
CNN structure and significantly improves the model’s ability
to analyze dynamic gesture’s information, as [22] introduce
a new way of training models of gesture recognition, which
sample the frame sequences in different time scales. For
instance, they downsample the video by 2, 4, 5, and 10
times. this helps the model learn features varying in different
ranges of time. Plus, this improves the model’s ability to infer
gestures’ categories with only a few frames.

C. Skeleton-Based Hand Gesture Recognition

Extracting human pose information from images requires a
large amount of computation. By contrast, coordinates of body
keypoints are a more compact and meaningful representation.
However, extracting keypoints from camera outputs is non-
trivial and often imprecise. Thanks to the advance of depth
sensors like Microsoft Kinect and Intel RealSense and modern
keypoint detection approaches [23], large amounts of precise
keypoint data is available to researchers nowadays. Skeleton-
based hand gesture recognition approaches [24][25][26] use
coordinates of pre-defined hand keypoints as input and output
labels of hand gestures. These approaches have much smaller
model sizes and require much less computation compared
to image-based approaches. De Smedt et al.’s approach [24]
used a temporal pyramid to obtain the feature vectors from a

multi-level representation of Fisher Vectors and other skeleton-
based geometric features. It then completed the classification
task using a linear SVM classifier. [25] proposed a model
that combines a Convolutional Neural Network (CNN) and
a Long-Short Term Memory (LSTM) recurrent network for
handling time series of 3D coordinates of skeleton keypoints.
[26] proposed a Double-feature Double-motion Network (DD-
Net) for skeleton-based action recognition, which uses a Joint
Collection Distances (JCD) feature and a two-scale global
motion feature.

[27] presented a similar method. First, the system detects the
presence of a human body in the webcam video and extracts
certain keypoints from it using [28]’s OpenPose framework, as
shown in Figure 4. After preprocessing and normalizing these
keypoints, the system then performs a 1-Nearest Neighbor
classifier with dynamic time warping as distance metrics to
recognize what gestures the user is performing. The overall
accuracy that the paper managed to achieve was about 77%.
This is by no means impressive, but the main advantage of
it is that this system is highly flexible and can run on almost
any machine, and it requires very little data to set up.

Fig. 4: Openpose Body Keypoints Extraction (Image source: [28])

III. METHODS

The functionality of our project could be divided into two
parts: gesture classification and hand tracking. We have tried
different techniques for each part. As in figure 1, our tech-
niques can be classified into five categories: hand keypoints
detection, skeleton-based hand gesture classification, image-
based hand gesture classification, image processing, and hand
tracking.

After obtaining the video stream from a camera, we use
a hand keypoint generation tool, such as Mediapipe [29], to
extract pre-defined keypoints (connections) of user’s hand.
Then, we use the coordinates of keypoints as the input to our
hand gesture classifier, which outputs the label of the gesture
shown in the video, e.g. left click. An alternative way to do this
is using image-based hand gesture classification, which almost
always includes a Convolutional Neural Network (CNN) [30],
to classify gesture from the video stream without extracting
keypoints.

Page 2 of 12

Meantime, we perform image processing techniques, such
as hand segmentation, on the video stream. This step will
output the location of the palm. We finally use a cursor
controller to move the cursor based on the location of the
hand.

Portability is the main factor we consider in our project. The
program should be able to run on a regular computer without
a GPU at a high frame rate. So, we avoid complex deep
neural networks and evaluate our models by both accuracy
and runtime.

A. Hand Keypoint Detection

Since our system design relies heavily on hand keypoints,
we paid particular attention to the choice of keypoint detec-
tion framework. Two commonly used ones were investigated,
namely Google’s Mediapipe [29] and CMU’s Openpose [28].
Table I outlines the major differences between them.

We tested both frameworks on a computer with an Intel
6th generation duo-core processor and 16 gb of memory.
This computer is chosen because we want to imitate the
average device that our target audiences have and test the
two framework’s performances on this specific condition. We
conclude that Mediapipe is the clear winner in this case. It
managed to achieve about 30 frames per second with some
occasional drop in frame rate, while Openpose only managed
to get as high as 5 frames per second. Mediapipe is also
much easier to use as it comes with a highly optimized and
constantly updated python package so that we do not need
to manually load the model as we did with Openpose. While
both frameworks output 21 keypoints on the hand, Mediapipe
offers additional depth information on the keypoints, which
is beneficial to our gesture recognition model since some
gestures rely on this information.

Mediapipe Openpose
FPS High Low
Ease of Use | High (Python Package) Low
Support High Low
Academic No Yes
Keypoints 21 21
Dimension 3D 2D

TABLE I: Comparison of Mediapipe and Openpose on Hand Key-
point Detection

B. Skeleton-Based Hand Gesture Recognition

Gesture recognition is the bottleneck of our system’s perfor-
mance. Image-based hand gesture recognition methods often
use deep neural networks such as ResNet [16], which contains
millions of parameters and cannot run on a CPU at a high
frame rate. Skeleton-based hand gesture recognition has two
advantages over image-based approaches: First, the location of
hand could be computed from keypoints which could be used
for hand tracking, and thus we do not need a separate palm
detector. Second, the skeleton data has much fewer dimensions
than image data, and its information can be extracted by shal-
low neural networks with lower computational cost compared
to CNN on images.

The procedure of skeleton-based hand gesture recognition
is as follows: First, we use a hand keypoint detector to extract
the skeleton of the user’s hand from a video stream. Then, we
pre-process the coordinates of keypoints and generate features.
Finally, we use the feature as the input to a classifier which
maps skeleton data to the probability of each output label, i.e.,
gesture.

Our hand keypoint detector has the same structure as
MediaPipe Hands, a real-time on-device hand tracking tool
[23]. It includes a palm detector and a hand landmark model.
The former operates on a full input image and locates palms
via an oriented hand bounding box, while the latter operates on
the cropped hand bounding box provided by the palm detector
and returns 21 landmarks consisting of X, y, and relative depth.

Although neural networks complex enough are able to learn
latent representations in the coordinates for gesture classifi-
cation tasks, past research finds that handmade features are
useful for gesture classification. In our experiments, we found
that introducing certain features could effectively improve the
classification accuracy without increasing the inference time.
For each video frame i, we extract feature vector fj, which
consists of:

1) distances between every pair of keypoints

2) angles between every pair of keypoint connections

For each pair of keypoints a and b, we calculate their
distance using the norm of the vector connecting them,

(1)

We define a keypoint connection as a vector pointing from
one keypoint to another, where the keygoints are gonnected in
our graph. For every two connections T 5, and T g, we then
calculate the angle between them as follows,

) |]
distanceg, = H T ab

‘2'

11
angle® = arccos —y— 2 g4 2)
[l []

2 2

In order to keep the inference time short on CPUs, we use
a simple RNN-based neural network to classify hand gestures
using these features. We designed and tested two approaches
to use the feature sequences fy;fy; ;Tn: sliding window
and stateful RNN. In the sliding window approach, as shown
in Figure 5, we simply use the features in the last k frames as
the input and reset the hidden states for every frame. In the
stateful RNN approach, as shown in Figure 6, we keep the
hidden states and only feed the features in the last frame into
the network. The sliding window approach has better accuracy
in general, but its cost is higher by sequence length times. We
found that the model consisting of a single GRU cell and a
softmax layer gives decent and robust classification accuracy
in both settings.

In additional to deep-learning approaches, we also exper-
imented with a few traditional machine learning algorithms.
The intuition behind this is that machine learning algorithms
generally require much less computational power than deep
learning, which is a huge consideration in our system design,

Page 3 of 12

Fig. 5: The sliding window approach processing 5 frames (sequence
length is 4)

Fig. 6: The stateful RNN approach processing 5 frames

and it offers higher interpretability. Table II shows the tradeoffs
among the three machine learning algorithms we tested. We
only looked at supervised learning algorithms because labels
are readily available in the Egogesture dataset and unsuper-
vised learning algorithms generally have much poorer perfor-
mance than supervised algorithms in gesture classification.

k-Nearest Neighbor(kNN) is a simple and intuitive algo-
rithm with very high interpretability. It finds the k most similar
training instances to the input in terms of a distance metric
and returns the most popular label in these k instances. The
advantage of using such an algorithm is that it does not involve
any actual training. Therefore, it usually serves as a good
starting point for a classification problem and is used as a
baseline for more complex algorithms. We believe kNN is
suitable for our use case because same gestures have similar
spatial arrangement in an image and in turn low distances
between corresponding keypoints after proper normalization.
However, KNN’s inference time scales with the size of the
dataset because it needs to find all k neighbors and is expected
to offer poor real-time performance.

Random Forest(RF) offers good performance in classi-
fication problems involving categorical data and provides
additional regularization over decision trees. The algorithm
combines a set of decision trees and trains each tree with
different sets of data. For each tree, the algorithm builds the

tree by doing the split that provides the highest information
gain. In other words, random forest allows us to see which
features are more important than others in making predictions.
However, having to build numerous decision trees means that
it requires a long training time compared to other algorithms
tested in this paper.

Unlike kNN and RF, support vector machine(SVM) is a
linear classification algorithm and can only provide a linear
decision boundary without further tweaking. Essentially, SVM
tries to find a hyperplane with equation 3 and determines the
w and b that will minimize the hinge loss. Gradient descent is
the technique we employed in order to achieve minimal loss.
Although SVM does not seem to offer any clear advantage
over other algorithms, inferencing using SVM is extremely
time-efficient since it only involves two vector operation. It
also does not require much memory since all it needs to store
are the w and b vectors, making it effective in real time on
low-end computers.

wix+b=0 (3)
Model Pros Cons
k-Nearest High interpretability, Poor scalability,
Neighbor easy to implement, no sensitive to outliers
training time
Random Regularization Low interpretability,
Forest (Reduce overfitting), long training time
works well with
categorical data
Support Fast inference time, poor in distinguishing
Vector memory efficient similar gestures, not
Machine suitable for large
dataset

TABLE II: Tradeoffs among Different Machine Learning Algorithms

Data preprocessing is performed before each of the above
mentioned 3 models is trained. Normalization is required
because the detected hands in each data instance can have
different translation, scale and rotation. Since we only care
about the relative position between each keypoint pairs, we
need to eliminate the effect caused by these three transforma-
tions. Therefore, we performed the normalization procedure
on our data as shown in figure 7 before feeding them into the
models. After extracing the 21 3D-keypoint coordinates from
the image, we will first perform translation, so that keypoint
0 is at the origin (0, 0). Then, we calculate the vector formed
by keypoint 0 and keypoint 9; we will call it v1 in subsequent
discussions. Then, we formulate the rotation matrix needed to
align v1 and the y-axis by determining the angle between v1
and the y-axis. Lastly, we scale all the keypoints so that the
maximum coordinates a point can have is 1.

C. Image-Based Hand Gesture Recognition

Image-based method aims at using an end-to-end model
to obtain the accurate category information of a gesture.
As the basis of multi-frame gesture recognition, we firstly
conduct research in single frame gesture recognition using
deep models. In our single-frame gesture recognition part,

Page 4 of 12

