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Abstract—We devise a new solution to computer mouse con-
trolling system using a webcam with computer vision-based
methods. By applying computer vision algorithms, we are able
to track the hands, recognize the gestures as well as use gesture
information to control the mouse. The entire process can operate
automatically and free users from physical mouse interaction.

I. INTRODUCTION

Nowadays, the mouse has become a standard input device
for computers. We must use mouses or trackpads to interact
with computers and send commands. However, some people
have trouble controlling a physical mouse. Conditions that can
cause difficulties in using computer mouses include impaired
sensation from nerve damage, Type II diabetes, spinal cord or
head injury, and some other illnesses.

People with conditions such as severe motion impairments
have the demand to use computers but may have trouble
working with a mouse or a keyboard to control the computer
[1]. Unfortunately, most of the very few existing feasible al-
ternative solutions out there are not applicable with consumer-
grade computers. Furthermore, supplemental devices might be
needed for some of them to work. It’s also suggested that
individuals with motion impairments tend to prefer camera-
based communication interfaces because of the customizable
and comfortable nature. Most importantly, those approaches
do not require the use of additional accessories that could
emphasize users’ disability [2].

To help people with difficulties using a traditional physical
computer mouse, we have developed a computer vision-based
input system with a camera as its input device.
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Fig. 1: Breakdown of our methods. 1 is Hand keypoints detection; 2
is Skeleton-based hand gesture classification; 3 is Image-based hand
gesture classification; 4 is Image processing; 5 is Hand tracking.

II. RELATED WORKS
A. Image Processing

Traditional image processing is a common tool for hand
tracking and gesture recognition. To segment hand area from
original frame, there are several standard procedures. As in [3]
and [4], background subtraction and skin color segmentation
can be the first major process. Based on skin color modeling,
several methods [5], [6], [7], [8], [9] use skin color to locate
related human body parts. With adaptive technology [9], the
precision of skin detection could increase by a certain degree.
Besides skin segmentation, another important process is face
removal. Works like [10], [11] remove face region using Haar-
like features, which requires decent background light intensity
and computing power. After the above operations, the contour
and defects of hands could be found using the OpenCV library
[12] since convexity defects [13] are a simple but efficient way
to mark hand gestures.

Generally, we would like to find defects and inner circle
of given hand so that it becomes much explicit for classifiers
to figure out gestures, as shown in figure 2. The capital A to
H areas are our convexity defects, while the red circle is our
inner circle.
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Fig. 2: Hand Contour and Related Properties from Image Processing
from [3]

B. Image-Based Hand Gesture Recognition

Recognizing the gestures represented by a sequence of
image frames requires large amounts of computations. Thanks
to the advance of deep convolutional neural networks (CNN5s)
[14][15][16] and recurrent neural networks (RNNs) such as
Long Short-Term Memory (LSTM)[17] and Gated Recurrent
Unit (GRU)[18], new techniques based on large-sized CNN



models tend to achieve high accuracy in gesture classifica-
tion tasks. Most approaches use either 3D-CNNs or RNNs
(LSTMs) to extract temporal information.

3D-CNN-based models perform convolutional operations
along the time axis, which enables them to learn rich temporal
information. [19] achieved state-of-the-art performance by
using a lightweight CNN model to detect gestures and a
deep 3D-CNN model to classify the detected gestures. The
ResNeXt-101 model, which is used as a classifier, achieved
the state-of-the-art offline classification accuracy of 94.04%
on the EgoGesture dataset[20].

Fig. 3: Sequential models. Based on classic RNNs (on the left), long-
short term memory (LSTM, on the middle) and gate recurrent units
(GRU, on the right) are developed to improve models’ performance
on more complicated sequences.

Videos are basically data with sequential structure. There-
fore, sequential models can be applied to multi-frame gesture
recognition. Recurrent neural networks are models specially
designed for sequential data analysis. Long short term memory
networks (LSTM) designed based on traditional RNN signifi-
cantly improves models’ long time feature extraction and can
be applied into gesture recognition tasks. LSTM based model
performs well when the related information locates relatively
far in the gesture sequence. [21] introduces LSTM to the
CNN structure and significantly improves the model’s ability
to analyze dynamic gesture’s information, as [22] introduce
a new way of training models of gesture recognition, which
sample the frame sequences in different time scales. For
instance, they downsample the video by 2, 4, 5, and 10
times. this helps the model learn features varying in different
ranges of time. Plus, this improves the model’s ability to infer
gestures’ categories with only a few frames.

C. Skeleton-Based Hand Gesture Recognition

Extracting human pose information from images requires a
large amount of computation. By contrast, coordinates of body
keypoints are a more compact and meaningful representation.
However, extracting keypoints from camera outputs is non-
trivial and often imprecise. Thanks to the advance of depth
sensors like Microsoft Kinect and Intel RealSense and modern
keypoint detection approaches [23], large amounts of precise
keypoint data is available to researchers nowadays. Skeleton-
based hand gesture recognition approaches [24][25][26] use
coordinates of pre-defined hand keypoints as input and output
labels of hand gestures. These approaches have much smaller
model sizes and require much less computation compared
to image-based approaches. De Smedt et al.’s approach [24]
used a temporal pyramid to obtain the feature vectors from a

multi-level representation of Fisher Vectors and other skeleton-
based geometric features. It then completed the classification
task using a linear SVM classifier. [25] proposed a model
that combines a Convolutional Neural Network (CNN) and
a Long-Short Term Memory (LSTM) recurrent network for
handling time series of 3D coordinates of skeleton keypoints.
[26] proposed a Double-feature Double-motion Network (DD-
Net) for skeleton-based action recognition, which uses a Joint
Collection Distances (JCD) feature and a two-scale global
motion feature.

[27] presented a similar method. First, the system detects the
presence of a human body in the webcam video and extracts
certain keypoints from it using [28]’s OpenPose framework, as
shown in Figure 4. After preprocessing and normalizing these
keypoints, the system then performs a 1-Nearest Neighbor
classifier with dynamic time warping as distance metrics to
recognize what gestures the user is performing. The overall
accuracy that the paper managed to achieve was about 77%.
This is by no means impressive, but the main advantage of
it is that this system is highly flexible and can run on almost
any machine, and it requires very little data to set up.

Fig. 4: Openpose Body Keypoints Extraction (Image source: [28])

III. METHODS

The functionality of our project could be divided into two
parts: gesture classification and hand tracking. We have tried
different techniques for each part. As in figure 1, our tech-
niques can be classified into five categories: hand keypoints
detection, skeleton-based hand gesture classification, image-
based hand gesture classification, image processing, and hand
tracking.

After obtaining the video stream from a camera, we use
a hand keypoint generation tool, such as Mediapipe [29], to
extract pre-defined keypoints (connections) of user’s hand.
Then, we use the coordinates of keypoints as the input to our
hand gesture classifier, which outputs the label of the gesture
shown in the video, e.g. left click. An alternative way to do this
is using image-based hand gesture classification, which almost
always includes a Convolutional Neural Network (CNN) [30],
to classify gesture from the video stream without extracting
keypoints.
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Meantime, we perform image processing techniques, such
as hand segmentation, on the video stream. This step will
output the location of the palm. We finally use a cursor
controller to move the cursor based on the location of the
hand.

Portability is the main factor we consider in our project. The
program should be able to run on a regular computer without
a GPU at a high frame rate. So, we avoid complex deep
neural networks and evaluate our models by both accuracy
and runtime.

A. Hand Keypoint Detection

Since our system design relies heavily on hand keypoints,
we paid particular attention to the choice of keypoint detec-
tion framework. Two commonly used ones were investigated,
namely Google’s Mediapipe [29] and CMU’s Openpose [28].
Table I outlines the major differences between them.

We tested both frameworks on a computer with an Intel
6th generation duo-core processor and 16 gb of memory.
This computer is chosen because we want to imitate the
average device that our target audiences have and test the
two framework’s performances on this specific condition. We
conclude that Mediapipe is the clear winner in this case. It
managed to achieve about 30 frames per second with some
occasional drop in frame rate, while Openpose only managed
to get as high as 5 frames per second. Mediapipe is also
much easier to use as it comes with a highly optimized and
constantly updated python package so that we do not need
to manually load the model as we did with Openpose. While
both frameworks output 21 keypoints on the hand, Mediapipe
offers additional depth information on the keypoints, which
is beneficial to our gesture recognition model since some
gestures rely on this information.

Mediapipe Openpose
FPS High Low
Ease of Use | High (Python Package) Low
Support High Low
Academic No Yes
Keypoints 21 21
Dimension 3D 2D

TABLE I: Comparison of Mediapipe and Openpose on Hand Key-
point Detection

B. Skeleton-Based Hand Gesture Recognition

Gesture recognition is the bottleneck of our system’s perfor-
mance. Image-based hand gesture recognition methods often
use deep neural networks such as ResNet [16], which contains
millions of parameters and cannot run on a CPU at a high
frame rate. Skeleton-based hand gesture recognition has two
advantages over image-based approaches: First, the location of
hand could be computed from keypoints which could be used
for hand tracking, and thus we do not need a separate palm
detector. Second, the skeleton data has much fewer dimensions
than image data, and its information can be extracted by shal-
low neural networks with lower computational cost compared
to CNN on images.

The procedure of skeleton-based hand gesture recognition
is as follows: First, we use a hand keypoint detector to extract
the skeleton of the user’s hand from a video stream. Then, we
pre-process the coordinates of keypoints and generate features.
Finally, we use the feature as the input to a classifier which
maps skeleton data to the probability of each output label, i.e.,
gesture.

Our hand keypoint detector has the same structure as
MediaPipe Hands, a real-time on-device hand tracking tool
[23]. It includes a palm detector and a hand landmark model.
The former operates on a full input image and locates palms
via an oriented hand bounding box, while the latter operates on
the cropped hand bounding box provided by the palm detector
and returns 21 landmarks consisting of X, y, and relative depth.

Although neural networks complex enough are able to learn
latent representations in the coordinates for gesture classifi-
cation tasks, past research finds that handmade features are
useful for gesture classification. In our experiments, we found
that introducing certain features could effectively improve the
classification accuracy without increasing the inference time.
For each video frame i, we extract feature vector f;, which
consists of:

1) distances between every pair of keypoints

2) angles between every pair of keypoint connections

For each pair of keypoints a and b, we calculate their
distance using the norm of the vector connecting them,

(1)

We define a keypoint connection as a vector pointing from
one keypoint to another, where the keypoints are connected in
our graph. For every two connections [ 4, and [ .4, we then
calculate the angle between them as follows,
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In order to keep the inference time short on CPUs, we use
a simple RNN-based neural network to classify hand gestures
using these features. We designed and tested two approaches
to use the feature sequences fy, f1,- -, fn: sliding window
and stateful RNN. In the sliding window approach, as shown
in Figure 5, we simply use the features in the last £ frames as
the input and reset the hidden states for every frame. In the
stateful RNN approach, as shown in Figure 6, we keep the
hidden states and only feed the features in the last frame into
the network. The sliding window approach has better accuracy
in general, but its cost is higher by sequence length times. We
found that the model consisting of a single GRU cell and a
softmax layer gives decent and robust classification accuracy
in both settings.

In additional to deep-learning approaches, we also exper-
imented with a few traditional machine learning algorithms.
The intuition behind this is that machine learning algorithms
generally require much less computational power than deep
learning, which is a huge consideration in our system design,
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Fig. 6: The stateful RNN approach processing 5 frames

and it offers higher interpretability. Table II shows the tradeoffs
among the three machine learning algorithms we tested. We
only looked at supervised learning algorithms because labels
are readily available in the Egogesture dataset and unsuper-
vised learning algorithms generally have much poorer perfor-
mance than supervised algorithms in gesture classification.

k-Nearest Neighbor(kNN) is a simple and intuitive algo-
rithm with very high interpretability. It finds the k most similar
training instances to the input in terms of a distance metric
and returns the most popular label in these k instances. The
advantage of using such an algorithm is that it does not involve
any actual training. Therefore, it usually serves as a good
starting point for a classification problem and is used as a
baseline for more complex algorithms. We believe kNN is
suitable for our use case because same gestures have similar
spatial arrangement in an image and in turn low distances
between corresponding keypoints after proper normalization.
However, KNN’s inference time scales with the size of the
dataset because it needs to find all k neighbors and is expected
to offer poor real-time performance.

Random Forest(RF) offers good performance in classi-
fication problems involving categorical data and provides
additional regularization over decision trees. The algorithm
combines a set of decision trees and trains each tree with
different sets of data. For each tree, the algorithm builds the

tree by doing the split that provides the highest information
gain. In other words, random forest allows us to see which
features are more important than others in making predictions.
However, having to build numerous decision trees means that
it requires a long training time compared to other algorithms
tested in this paper.

Unlike kNN and RF, support vector machine(SVM) is a
linear classification algorithm and can only provide a linear
decision boundary without further tweaking. Essentially, SVM
tries to find a hyperplane with equation 3 and determines the
w and b that will minimize the hinge loss. Gradient descent is
the technique we employed in order to achieve minimal loss.
Although SVM does not seem to offer any clear advantage
over other algorithms, inferencing using SVM is extremely
time-efficient since it only involves two vector operation. It
also does not require much memory since all it needs to store
are the w and b vectors, making it effective in real time on
low-end computers.

wlz +b=0 3)
Model Pros Cons
k-Nearest High interpretability, Poor scalability,
Neighbor easy to implement, no sensitive to outliers
training time
Random Regularization Low interpretability,
Forest (Reduce overfitting), long training time
works well with
categorical data
Support Fast inference time, poor in distinguishing
Vector memory efficient similar gestures, not
Machine suitable for large
dataset

TABLE II: Tradeoffs among Different Machine Learning Algorithms

Data preprocessing is performed before each of the above
mentioned 3 models is trained. Normalization is required
because the detected hands in each data instance can have
different translation, scale and rotation. Since we only care
about the relative position between each keypoint pairs, we
need to eliminate the effect caused by these three transforma-
tions. Therefore, we performed the normalization procedure
on our data as shown in figure 7 before feeding them into the
models. After extracing the 21 3D-keypoint coordinates from
the image, we will first perform translation, so that keypoint
0 is at the origin (0, 0). Then, we calculate the vector formed
by keypoint 0 and keypoint 9; we will call it v1 in subsequent
discussions. Then, we formulate the rotation matrix needed to
align v1 and the y-axis by determining the angle between vl
and the y-axis. Lastly, we scale all the keypoints so that the
maximum coordinates a point can have is 1.

C. Image-Based Hand Gesture Recognition

Image-based method aims at using an end-to-end model
to obtain the accurate category information of a gesture.
As the basis of multi-frame gesture recognition, we firstly
conduct research in single frame gesture recognition using
deep models. In our single-frame gesture recognition part,
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Fig. 7: Data Preprocessing Procedure

we apply single-shot detection (SSD) to detect hands in the
scene and then crop the bounding boxes out. SSD network
is a popular object detection framework that perform well in
both accuracy and speed. It uses the VGG backbone to extract
image feature and merge features from different feature map
sizes. Thus, it can perform well when objects in the image
change in a significant range.
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Fig. 8: Single-shot object detection network
Afterward, we design a convolutional neural network de-

cribed in Table III to classify the gesture that the hand is
performing in the bounding boxes.

Layer name Parameters or Settings Feature map
Conv 1 (3,3,32,0,1) (198, 198, 32)
Activation 1 ReLU (198, 198, 32)
Conv 2 (3,3,32,0,1) (196, 196, 32)
Activation 2 ReLU (196, 196, 32)
Maxpooling 1 2,2) (98, 98, 32)
Dropout 1 0.5 (98, 98, 32)
Flatten 3 None (98 * 98 * 32)
Dense 1 None (1024)
Activation 3 ReLU (1024)
Dropout 2 0.5 (1024)

Dense 2 None (128)
Activation 4 Softmax (10)

TABLE III: Self-designed convolutional classifier structure. For con-
volutional layers, (3,3,32,0,1) refers to kernel size of (3,3), stride 1
and padding 0. For maxpooling layers, (2,2) refers to pooling size.
For dropout layers, 0.5 refers to drop probability.

Single frame-based gesture recognition can make sense
under some particular circumstances. However, most gestures
can only be expressed with a sequence of frames. The single
frame model cannot handle this problem. Thus, we need to
develop models which can handle multi-frame gestures.

In our multi-frame gesture recognition research, we mainly
focus on two models with similar thoughts. They are multi-
timescale model devised from temporal relation networks
(TRN) [31] and frame-segment models devised from multi-

frame fusion models (MFF) [32]. TRN is a network which
samples the gesture videos into different time scales. For
instance, we sample the video with different frame numbers
(2, 5, 10, etc.). Afterward, different sample groups are fed
into different convolutional neural networks to generate feature
vectors. In the final step, all vectors are fused together to
obtain a global representative of the gesture information and
a multi-layer preceptron (MLP) is implemented to complete
the category regression. The structure of multi-timescale can
be shown in figure 9.
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Fig. 9: Multi-timescale gesture recognition model

Prediction

frame-segmentation model’s structure is quite similar to
the multi-timescale model. It also samples the different areas
of a gesture video. It difference from TRN can be shown
in figure 10. It split the video directly into segments with
the sequence of the time. After each segment’s feature was
extracted by convolutional neural networks, these features are
concatenated into a whole representation of the original video.
It also implemented optical flow computation to help analyze
the motion of the gestures.

D. Hand Tracking Based on Image Processing

Since we cannot expect all of our potential users to have
a fine GPU to perform deep learning methods, traditional
methods based on image processing are as well needed. To
combine works together, image processing is used to locate
the hand area and provide it as an input to gesture classifiers.
In general, we think it would be much easier for classifiers to
utilize explicit hand images without any noise or background
information.

We divide our implementation into two major parts: Back-
ground Subtraction and Contour Finding.

1) Background Subtraction: Our implementation defines
background subtraction as a combination of skin-color seg-
mentation, face removal, morphology operations and Gaussian
filter.
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Fig. 10: Frame segmentation gesture recognition model

Prediction

Skin-Color Segmentation: Unlike RGB channel, researchers
find the YCrCb and HSV channels are more efficient to
differentiate skin color from various image background colors.
Based on our tests, we choose the below ranges for HSV and
YCrCb values so that we could best extract skin regions, as
in Figure 11.

54 <Y < 163,133 < Cr < 173,77 < Cr < 127
0< H <33,58<5 <25525<V <255
H,S,V,Y,Cr,Cb € [0,255]

However, those ranges could not cover all kinds of skin
colors, such as people with darker skin. Another issue is
this color space could contain many skin-like background
information like furniture or floor. Thus, it requires a high
contrast environment which should be different from human
skin color. To maintain a more precise controller for HSV and
YCrCb color space, we design a track bar for all six values so
that users could adjust proper thresholds at the initialization,
as shown in Figure 12.

Fig. 11: Skin Segmentation

Fig. 12: Track Bars

Face Removal: Since the skin color segmentation extracts
both hand and face area, our system needs to differentiate the
hand and the face region so that it could further locate hand
area. Based on previous researches, we decide to use Haar-
like features to figure out which area is the face and therefore
remove it by simply blocking out. Fortunately, OpenCV library
provides us with a well-prepared Haar-like XML so that we
could simply utilize it as our face recognition library. This
XML file is efficient and well-performed for other methods to
subtract face area in most conditions. Figure 13 shows a clear
face blocking effect after face removal.

Fig. 13: Face Removal

Smooth Methods: After skin segmentation and face removal,
there are still some noises around our frame. To eliminate them
as much as possible, we implement morphology operations and
Gaussian Filter to acquire a clean hand area. In this project,
we apply Open Operator, which means Erosion first and then
Dilation. The Gaussian Filter helps us to blur our frame a bit
so that edge noises such as boundaries could be eliminated.
2) Contour Finding: From our first major step, we could
acquire a binary image frame containing hand area with white
color and black color for background information. That large
white area, which is supposed as our hand area, should be
our ultimate goal. We use contour from the OpenCV library,
an array of points representing a hand curve, to locate hand
region. Since it is common to finalize multiple contours from
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the previous binary frame. We compute the weighted average
of contour center and area to determine which one is hand
center. Obviously, the largest area is the ideal hand location.

Figure 14 shows a related hand contour we find. We use
lines between the star and far points of each defect to include
the whole hand area, while those red points are the valley area
of each defect.

Fig. 14: Hand Contour and Defects from Image Processing

Due to the hand contour, we could simply detect hand
gestures based on the defects of that contour. For example, we
consider two gestures: open and closed. If those defects of the
hand contour are well-organized, which means endpoints are
behind start points and far points, we consider that situation
as an open gesture. We could as well use the center of the
inner circle to move our cursor. Figure 15 shows a demo of
gesture recognition and the center of the inner circle.

Fig. 15: Gesture Recognition and Center of Inner Circle

E. Mouse Control

1) Basic Cursor Control Theory: Our mouse control takes
information from the sequences of frames from MediaPipe,
performs calculations on hand key points, and then moves
the mouse to a corresponding position. We have tried three
different mouse control methods, including absolute mouse
control, relative mouse control, and joystick mouse control.

The absolute mouse control is the simplest and most intu-
itive one among the three methods. It aggregates the hand key
point info to a single coordinate point on the screen. It gets
the width and length of the screen, and the x, y coordinates
the hand’s center and moves the mouse to the proportional
position. The cursor is at the place of the hand, and it moves
with the hand movements. Please find an example of the
absolute mouse control method attached below. In Figure 16,
we can see that the cursor is around the center of the hand.
In order to move the cursor, we just change the position
of our hands. Although this method is easy to get started
with for beginners, it has some shortcomings. For example,
it is susceptible to noise. The user’s hand might have some
unconscious shakes during the usage of the assistive mouse.
Then, the cursor will also move because of these shakes. In
addition, this method may include many hand movements.
Suppose the user wants to move the cursor from the left to
the right of the screen; he or she may act a large wave of the
hand. Besides, the result of the mouse control is also affected
by the camera resolution. The conversion of the position of
hand and cursor may be inaccurate if the resolution of the
camera is low.

i—

8

Fig. 16: Example of Absolute Mouse Control

The relative control method gets motivation from the current
mouses and trackpads. It gets inspiration from the current
mouses and trackpads. Unlike the absolute mouse control, the
mouse cursor’s position is not necessarily the position of the
hand on the screen. The mouse moves faster if the hand’s
position changes a lot. The relative mouse control keeps track
of the previous position of the hand and calculates the distance
between the last center and the current center for the direction
and acceleration of hand movement. Then, we move the cursor
to the relative position to its previous position. We use a deque
with length 5 to keep track of the center position and for noise
reduction. We push the new center to the deque after every
cursor movement. The relative mouse control is less sensitive
to noise than the absolute mouse control. It is the approach
that is being used in similar commercial products, such as
the built-in accessibility features of Mac OS and Windows.
In addition, this method requires additional parameter tuning
compared with the absolute mouse control.
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Our third method is the joystick mouse control. It works
like a real joystick. We control the mouse with a joystick by
moving our hand in different directions with different distances
(acting as forces) from the center. There is a fixed point we set
on the screen used as the center of the joystick. This method
calculates the hand position’s angle and magnitude with the
center to decide the mouse movement’s direction and speed.
Suppose if our hand is on the right-hand side of the center,
then the mouse cursor will move to the right. In Figure 17,
the center we set is the starting point of the blue line. The
cursor can keep moving right in the same direction if the user’s
hand stays in the same place on the right of the center. If we
want the cursor to move faster but in the same direction, we
just move our hand farther from the joystick center. Figure 18
is an example showing the mouse moving in the upper-left
direction. When the user’s hand is in the upper-left position
of the center, then the mouse will start to move in the same
direction on its current location; the movement speed depends
on the user’s hand’s distance from the center. In addition, for
noise reduction, there is a dead zone area around the center we
set. If the resulting coordinate is within the area, then there will
be no movement of the cursor. This method is less susceptible
to noise. In addition, we do not need many hand movements
by using this method if we want to move the cursor in one
direction continuously. However, the joystick mouse control is
not very intuitive for users to get started with.

‘f I

Fig. 17: Example of Joystick Mouse Control
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Fig. 18: Example of Joystick Mouse Control

Besides, we use some extra steps to reduce the effects of
handshakes on mouse movement further. We have applied two
filters on the center of the palms, the sliding window and the
Kalman filter. In the sliding window method, we keep track
of the past five frames in a queue and return the average
of them as the center used for the next hand movement.

In the Kalman filtering method, we track and predict hand
movements according to their previous locations. This method
makes use of many linear algebra techniques. The equation
in Kalman filtering is divided into prediction and correction
equations. It calculates the state, computes its noise, and uses
them to predict later hand movements.

2) Pinch Gesture: Inspired from [33] and MediaPipe key-
point, pinch gesture is another procedure we apply to maintain
a stable cursor control. Similar to daily human gestures, pinch
gesture is one of humans’ common pickup operations. By
bringing the thumb and index finger together, we apply a
method for small range viewing situations to avoid complex
and fragile hand gesture classifiers. By detecting the distance
between two fingertips, we could simply find out if the pinch
gesture is formed or not. We maintain a state machine to
transform from pinch to no pinch or no pinch to pinch. If
two fingertips are closer enough, as in Figure 19, our system
would decide it as a pinch gesture. While in a pinch gesture
shown in Figure 20, when two fingertips are far away, the
system would consider it as a gesture transform from pinch
to none pinch. Therefore, when forming a pinch gesture, the
system would start cursor control. As shown in Figure 19, the
user forms a pinch gesture so that the system start to trace the
centroid of that hole. To prevent unable to visit the boundaries
of screen, we form a blue rectangle in the frame to represent
the screen area. When the centroid point is in the right upper
of the blue rectangle, the cursor appears as well in the right
upper location of the computer screen.

: Pinch Gesture

Fig. 20: Pinch Gesture

The pinch grasp is simple and precise. Therefore, re-opening
and re-closing could be accurately detected by our state
machine. When the system detects a re-opening and re-closing
operations from hand, it would trigger a mouse-down event,
as shown in Figure 21. When triggering a mouse-down event,
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once users open their thumb and index finger again, the system
would trigger a mouse-up event. Hence, it is succinct for us
to apply the click operations (click and double-click) and the
dragging operation.

b Y . O

Fig. 21: Dragging Operation

I'V. EXPERIMENT RESULTS

A. Hand Tracking Based on Image Processing

Based on image processing, the cursor control system could
use the palm center or center of the inner circle as the cursor
position to move the mouse. Unlike official mouse control
testing, we test this traditional OpenCV works in a related
simple but succinct way.

1) Benchmark: Since in this project we hold up our hands
in mid-air and use them to control our mouses, we cannot
avoid the hand shaking and other body trembles. To best test
this part, we decide to draw two vertical and horizontal lines
in drawing applications in Windows so that we could find how
much the reference image is covered by our hand movements.
In detail, the benchmark is shown in Figure 22, while the
drawing result is shown in Figure 23 .

Fig. 22: Reference Benchmark

2) Test Results: Comparing basic physic mouse drawing
and our hand tracking drawing, we generate Table IV to
present our tracking accuracy. As mentioned above, we need
more time to move to a precise location due to the hand
shaking. The time consuming is relatively much higher than a
common computer mouse.

Fig. 23: Drawing Result

Test Type | Image Processing Method | Physic Mouse
Accuracy 99.16% 94.28%
Time 6.47s 19.89s

TABLE IV: Test for accuracy and time consuming for normal mouse
and image processing method

B. Skeleton-Based Hand Gesture Recognition

To train such a classifier, we use EgoGesture, a dataset
containing more than 24,000 gesture samples and 3,000,000
frames for both color and depth modalities from 50 distinct
subjects [20]. To make the data format fit our problem setting,
we use a subset of videos performing 11 static gestures and
only use the RGB frames of the videos. The gestures we
selected are fist and ten gestures representing digits from 0
to 9.

Using the coordinates as well as generated features as input,
we train classification models using machine learning. We then
evaluate our model on a validation set which we sliced from
EgoGesture dataset. We tested single-layer networks, including
Recurrent Neural Network, Long Short-Term Memory, Gated
Recurrent Unit, and Multilayer Perceptron, that processes
concatenated features along the time dimension. We also did
ablation tests on our generated features by adding or removing
individual features to show that using these features could
improve the overall accuracy. We choose the sequence length
to be 5 and the frame rate of input to be 10 FPS. The results
of the sliding window models are shown in Table V, while
the results of the stateful RNN models are shown in Table
VI. Recurrent neural network using a single layer of GRU
reaches the highest accuracy of 83.25% with the sequence to
sequence models and 77.66% with the stateful RNN models.
Note that although LSTM and GRU have similar accuracy in
multiple experiments, GRU has a simpler structure and gives
much smaller latency. So, we choose GRU as our final model.
We also found that most false predictions happen when our
keypoint detector cannot detect keypoints precisely.

Although our model’s accuracy is lower than the state-of-
the-art approach’s [19] (93.75%), the model is much simpler
and enables the whole program to run on CPU with an
acceptable latency. The frame rate is 10 FPS on a MacBook
Pro with an Intel Core 19 CPU, whereas [19]’s approach uses
3D-CNN based on ResNeXt-101, which runs at a frame rate
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lower than 3 FPS.

Model | Coordinates only | +distances | +angles | +distances+angles
MLP 78.37% 81.37% 80.94% 81.31%
RNN 77.99% 81.46% 80.45% 81.48%
LSTM 81.18% 82.83% 82.18% 82.93%
GRU 81.73% 82.21% 81.95% 83.25%

TABLE V: Cross validation accuracy of the sliding window models
on 11 gestures from EgoGesture dataset

Model | Coordinates only | +distances | +angles | +distances+angles
RNN 71.23% 75.03% 74.03% 75.58%
LSTM 73.51% 77.16% 74.77% 77.10%
GRU 73.65% 76.67% 75.63% 77.66%

TABLE VI: Cross validation accuracy of the stateful RNN models
on 11 gestures from EgoGesture dataset

We also present the results obtained from kNN, RF and
SVM in table VIII. In order to obtain the best hyperpa-
rameters for each model with the exception of SVM (no
hyperparameters to be tuned), we perform a 10-fold cross-
validation and keep the model that outputs the highest cross-
validated test accuracy. Table VII lists the best parameters for
each model with their cross-validated accuracy. The real-time
performances of these models are reasonably good, with an
average fps of 20 to 30. The model inferences cause only a
very minimal slow down of the frame rate.

Model Parameters Score

kNN k=6, euclidean distance 68.7%

RF max tree depth = 23, number 70.5%
of trees = 200

TABLE VII: Best-performing Parameters with Corresponding Cross-
validated Accuracy for Each ML Model

Model Accuracy
K-Nearest Neighbor 69.4%
Random Forest 71.0%
Support Vector Machine 71.7%

TABLE VIII: Test accuracy of three machine learning algorithms on
Egogesture dataset

C. Image-Based Hand Gesture Recognition

We initially test our single frame gesture classification
performance. The models of SSD and CNN classifier are
separately trained and tested jointly. The SSD detection model
can have an accuracy of 0.893 on the EgoGesture Dataset, and
the classification network can have an accuracy of 0.923 on a
static gesture dataset collected by ourselves (including Stop,
Punch, OK gestures, totally 10 categories).

Both the multi-timescale model and the frame segmentation
model are trained on another dataset named Jester-v1, which
contains 140000 videos and in total 27 gesture categories. We
train models with two different CNN backbones, ResNet and
Inception-V3. The performance can are shown in Table IX and
we can see that the model’s classification result is acceptable.
To be specific, frame-segmentation is generally better than

Fig. 24: Single frame gesture recognition. Based on Single-shot detec-
tion backbone and self-designed model, the model can handle a range
of different gesture categories, and multi-hand gesture recognition is
also supported.

multi-timescale model. In terms of feature extraction back-
bones, Inception-V3 performs better than ResNet. As for the
inference time of the model, when processing a 240-frame
dynamic gesture video, we firstly introduce a sample step to
obtain a 30-frame video and obtain a 7 second forward time.
since 240-frame video take over 7 seconds, it is safe to say
that we can achieve real-time recognition.

Framework | Multi-timescale | Frame segmentation
ResNet 93.67% 94.40%
Inception-V3 94.67% 95.22%

TABLE IX: Accuracy on Jester-vl dataset of multi-timescale model
and frame segmentation model

From the experiments we can find out that the models can
perform well on large datasets with an acceptable inference
time for real-time recognition requirements.

In conclusion, single-frame-based model can handle some
simple gestures (Stop, Punch, OK, etc.). However, it fails to
predict multi-frame gestures both theoretically and practically.
Therefore, we introduce two models to process gesture videos.
When trained with a large dataset, dynamic gesture recognition
also reaches good performance. Plus, dynamic gesture models
can handle more gesture categories.

D. Mouse Control

1) Basic Cursor Control: We performed a mouse move-
ment and clicking accuracy test on an online mouse accuracy
testing tool. The tool randomly generates multiple circles that
allow users to click on. It keeps track of the number of
clicks and the accuracy rate in the duration of 30 seconds.
We experimented on each mouse control method three times
and took the average value. In comparison, we also performed
the same test on the Mac OS head pointer, which is also an
alternate control method that helps those with trouble using
a physical mouse. The results of each method are shown in
Table X.

2) Pinch Gesture: Since our pinch gesture apples the same
cursor control method as the previous part. The accuracy is

Page 10 of 12



MOUSE ACCURACY

Fig. 25: The randomly generated circles can be clicked on to evaluate
the speed and accuracy of each mouse control method

Method # of Clicks in 30s | Accuracy Rate
Absolute 12 55%
Relative 13 67%
Joystick 9 43%

Mac OS head pointer 10 47%

TABLE X: Number of clicks and cursor accuracy for each mouse
control method

similar. For this part, we only test the speed and accuracy of
the dragging operation. We find ten users to test our pinch
gesture ten times to select their desired application icons in
desktop and then move those icons to their destinations, which
is shown in Table XI. Generally, the accuracy is satisfied, while
the speed needs improvement since users send feedback about
speeding too much time aiming at objects.

Test Type | Physic Mouse | Pinch Gesture
Accuracy 100% 96.06%
Time 3.67s 16.03s

TABLE XI: Test for accuracy and speed of dragging operation for
normal mouse and pinch gesture

V. CONCLUSION

In conclusion, our team worked on building a mouse control
assistive system that allows users to perform mouse cursor
operations without interacting with a physical mouse. In order
to use the assistive mouse, the users need to be able to move
their hands and manipulate their fingers.

To track the hand and classify gestures, we have imple-
mented several methods:

o Traditional methods based on image processing could

satisfy our requirements in low-cost devices.

¢ An end-to-end deep learning models which process the

images directly. Single-shot detection based pipeline can
achieve one-image gesture recognition task. For more
complex dynamic gestures, we devise multi-timescale
models and frame-splitting models, which perform really
well on large public datasets.

o An alternative learning model making use of keypoints

generated from Mediapipe as input.

We have tried three mouse control methods, including abso-
lute mouse control, relative mouse control, and joystick mouse
control. The absolute mouse control is the most intuitive one.

The relative mouse control provides us the best accuracy after
tests, while the joystick mouse control includes the fewest
hand movements.

VI. FUTURE WORKS

Our implementation still suffers from several limitations.
Since our project is composed of several different methods, we
aim at different aspects to further improve the system stability
and the user experience.

For image processing, ongoing progress would be a more
robust extracting method for the hand region. The current
method cannot handle the dim light environment. Another
problem is about face removal. If the hand overlaps too much
over the face, it would cause a tracking false.

The current model to extract keypoints is based on deep
learning, which has a high cost and does not work well for
certain hand gestures. Future works should consider using
other methods to extract hand keypoints in an image.

For mouse control, we will look into improving and sta-
bilizing those mouse control approaches. We will also apply
more anti-shake mechanisms.

The gestures we used are from publicly available gesture
datasets. Hence, they can feel unintuitive to use when mapped
to mouse commands. Future work can expand this by using
a custom-generated dataset and make the gestures feel more
natural.
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