
Applications of Parallel Computers: CS 267
UC Berkeley
Instructors: Aydin Buluc, Jim Demmel, Kathy Yelick Increasing Sample Throughput for RL
Environments

Increasing Sample Throughput for RL Environments
Authors: Bryan Chen, Benny Chen, Adrian Liu

1 Introduction

Although there have been many advances in deep Reinforcement Learning recently, training rein-
forcement learning (RL) algorithms is a non-trivial problem due to its complex nature. RL algo-
rithms could be divided into on-policy algorithms and off-policy algorithms. Off-policy algorithms
like DQN[7], DDPG[5], and SAC[2] do not require the data it is trained on to be produced by the
policy it improves. They usually use a cache called replay buffer to store the decision that the agent
makes. On-policy reinforcement learning algorithms including A3C[6], TRPO[10], and PPO[11]
evaluate and try to improve the policy that produces the action. While the on-policy algorithms are
stabler during training, they are also more sample inefficient, often requiring on the order of mil-
lions of samples to learn good policies. Even in relatively simple simulated environments, this may
take a long time. The question we are trying to answer is: can we utilize the GPU through custom
CUDA kernels to simulate common environments in parallel in order to increase sample through-
put? If we are successful, our work may speed up training on simple environments and provide the
groundwork for major speed ups for more difficult environments that are CPU bottlenecked.

2 Related Work

Stable Baseline’s [9] vectorized environment leverages Python’s multiprocessing library, which
spawns worker processes. Each worker process executes one environment and sends the results
to the main process, which introduces overhead from the inter-process communication. RLlib [4]
provides remote environments, which create env instances in Ray actors and step them in parallel.
These remote processes introduce communication overheads and only help if the environment
is very expensive to step / reset. NVIDIA has announced Isaac Gym [8], a physics simulation
environment for reinforcement learning research. Isaac Gym enables a complete end-to-end GPU
RL pipeline by leveraging NVIDIA’s PhysX GPU-accelerated simulation engine, which allows it to
gather the experience data required for robotics RL. Isaac Gym also enables observation and reward
calculations to take place on the GPU, thereby avoiding significant performance bottlenecks. In
particular, costly data transfers between the GPU and the CPU are eliminated. NVIDIA declares
that researchers can achieve the same level of success as OpenAI’s supercomputer on a single A100
GPU in about 10 hours.



2 Increasing Sample Throughput for RL Environments

3 Methodology

3.1 Setting

In order to investigate speeding up sample throughput for RL environments, we take a simple and
commonly used environment offered by OpenAI Gym [1], CartPole. We briefly introduce the
general setting from the perspective of the simulation. The environment moves in discrete steps
corresponding to actions from an agent. Thus at a particular timestep t, the agent receives some
state information s, takes an action a, and receives a reward r as well as the next state s′. The
steps are categorized into “episodes”; an episode might end when the agent reaches some goal or
a predetermined amount of steps, upon which the environment is reset to a particular state and the
next episode begins. For the purposes of this project, we are not aiming to speed up the details of
any particular environment. Instead, we aim to increase sample throughput by simulating multiple
environments in parallel.

As an illustration, in CartPole the goal of the agent is to balance a pole on a cart. The actions
available to the agent are to move the cart left and right. It gets a reward based on how close to
balanced the pole is.

3.2 Approaches

We outline the various approaches taken in order to increase sample throughput using various
forms of parallelism.

Baseline. The simplest way to induce parallelism would be process-level, and this comes in stan-
dard packages like in the stable baselines [9] shown in Figure 1. The idea is to keep p copies of
the environment across p processes. Unfortunately, this method is quite ineffective. First, it scales
extremely poorly; you can only have as many copies as number of CPU cores; next, the overhead
is quite high to synchronize all of the processes. While it is true that you could use multithread-
ing in simpler environments, for more complicated environments this is not possible so we do not
examine it.

PyTorch Batching. The first approach we take is to utilize the GPU to induce some parallelism.
This most naive way to do this is to reimplement the environment dynamics to do each operation
with PyTorch tensors, and extend it in a batched manner so each operation operates over multiple
environments. The architecture of this method is shown in Figure 2 While this provides much
speedup, there are a couple downsides: first, we have to wait for the slowest thread/environment
to complete each operation. Next, the PyTorch operations are black-box and not optimized for the
particular calculations we want to do.

Custom CUDA Kernels Our main approach is to take it a step further and write some custom
CUDA Kernels in order to fully take advantage of the GPU. We do this using Numba in Python,
as shown in Figure 3. The idea is that since we know the parallelism is over the environments,
we assign one thread to each environment, and then tune the block size appropriately. Then each



Increasing Sample Throughput for RL Environments 3

Subprocess 
1

Subprocess 
2

Subprocess 
n

Main Process

Env 1 Env 2 Env n

Vectorized Actions

State 
1

State 
n

State 
2

Agent

...

Figure 1: Architecture of stable baseline vectorized environments

Main Process

Vectorized environments

Vectorized actions

Vectorized states

Agent

Thread 1 Thread 2 Thread 3 Thread m...

Figure 2: Architecture of vectorized environments based on PyTorch Tensors



4 Increasing Sample Throughput for RL Environments

Main Process

Thread 1 Thread 2

Env 1 Env 3 Env n

State 
1

State 
n

State 
3

Agent

Vectorized Actions

...

Thread m...

Env 2

State 
2

Figure 3: Architecture of vectorized environments based on Numba CUDA Kernel

thread can perform the calculations directly without any synchronization or overhead until the end
of the step.

3.3 Further Optimizations

Search over block sizes We know that block sizes should be above 32 to avoid wasted cycles, but
what about above that? In order to answer this, we run a search across the block sizes and select
the best performing one (with respect to sample throughput.)

Profiling We run a profiler to see whether or not there is a bottleneck during our calculations.
However, from the analysis, most of the time is in doing the work and it is unlikely there is further
optimization to be found in better sychronization or other details.

4 Results

4.1 Scaling with number of environments

We first compare the runtime of a single step on Stable Baseline’s [9] Subprocess Environments
(CPU), vectorized environments based on PyTorch Tensor operation, and vectorized environments
based on Numba Kernels with different threads per block (TPB) settings. We keep the amount



Increasing Sample Throughput for RL Environments 5

Figure 4: Average runtime of a singe environment step with different number of environments and
threads per block

of work same across different environment instances and vary the number of environments. The
results are shwon in Figure 4.

The number of total environments are limited to 32 in Stable Baseline, whereas there is no limi-
tation when using GPUs. We find that the Stable Baseline implementation only has the best per-
formance when the number of environments is 1. With a proper TPB, the Numba implementation
could run faster than the PyTorch implementation. The number of threads per block can be any
value between 1 and 1024 but gives the best performance when it is at least 64. Increasing number
of threads per block does not affect performance when it is greater than 64. We use turning point
to refer to the number of environments where the runtime starts to increase linearly. The turning
point is around 104 when TPB is low and could reach 105 when TPB is higher.

4.2 Scaling with work
We also compare the runtime of different workloads in each settings. We modify the workload in
each environment step by repeating the calculation in one step. The results are shown in Figure 5
and Figure 6. We choose the TPB for the Numba Kernel approach to be 64, which gives a better
performance than the PyTorch Tensor approach. While the runtime of PyTorch approach always
increases linearly with the amount of workload, Numba Kernel’s only increases sublinearly when
the number of environments is smaller than 106.

4.3 Training RL agents using the environments
We train a number of reinforcement learning agents using PPO2 on our environments as well as
Stable baseline’s vectorized environment. The average rewards are plotted against the training



6 Increasing Sample Throughput for RL Environments

Figure 5: Average runtime of one step with varying workloads and number of environments using
PyTorch Tensor

Figure 6: Average runtime of one step with varying workloads and number of environments using
Numba Kernel



Increasing Sample Throughput for RL Environments 7

(a) Pytorch tensor (b) Numba Kernel

(c) Stable Baselines (CPU)

Figure 7: Average reward against training time

time of the agents, and shown in Figure 7. The agents are evaluated on the original environment
and the reported numbers are averages of 5 experiments. The learning curve of RL algorithms
can change depending on the number of environments run in parallel. Therefore, we adjusted the
number of training steps for each setting such that they would all learn a near-optimal policy in a
comparable amount of training time. The results show that our environments can be used to train
good policies, but increase in the number of training steps would often offset the faster sampling
rate. This suggests further modification to RL algorithms might be needed in order to fully utilize
the higher sampling throughput.

4.4 Profiling Diagram

As seen in Figure 8, we use the python code profiler in order to breakdown where the time is being
spent during 100 calls to environment steps. The table is produced by snakeviz [3]. As shown,
the majority of time (that isn’t part of the IPython overhead) is spent quite equally among various
function calls to calculations. If there were a bottleneck, we might expect some calls to take much
longer than others, or for individual calls among the 100 to vary. It suggests that for our current



8 Increasing Sample Throughput for RL Environments

Figure 8: Table showing runtime breakdown during 100 steps.

approach, it is adequately using the resources and there is no large opportunity for speeding it up.

5 Conclusions

In this work, we present a study of increasing sample throughput for simple RL environments by
utilizing parallelism on the GPU. We demonstrate this by utilizing tensor operations and then cus-
tom CUDA kernels for an empirical evaluation. Our results are able to outperform the baseline of
a simple multiprocessing approach, measured by the sample throughput as we increase the num-
ber of environments and as we move to regimes where the environment work increases. We also
demonstrate that our environments are usable with modern RL algorithms by training good policies
with them. Future work includes moving to environments with sophisticated physics simulations,
as well as optimizing for further parallelism speedups in the environments themselves instead of
just sample throughput.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540 [cs], June 2016. arXiv:
1606.01540.

[2] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
arXiv:1801.01290 [cs, stat], August 2018. arXiv: 1801.01290.

[3] Jiffyclub. Snakeviz. https://jiffyclub.github.io/snakeviz/.



Increasing Sample Throughput for RL Environments 9

[4] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken
Goldberg, and Ion Stoica. Ray rllib: A composable and scalable reinforcement learning
library. CoRR, abs/1712.09381, 2017.

[5] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. arXiv:1509.02971 [cs, stat], September 2015. arXiv: 1509.02971.

[6] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. arXiv:1602.01783 [cs], June 2016. arXiv: 1602.01783.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning.
page 9.

[8] NVIDIA.

[9] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
and Noah Dormann. Stable baselines3. https://github.com/DLR-RM/
stable-baselines3, 2019.

[10] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. arXiv:1502.05477 [cs], April 2017. arXiv: 1502.05477.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. page 12.


